### PHYS 705: Classical Mechanics

# HW#8 (11/8) and #9 (11/15) move down one more week

HW#8 and #9: CT and Hamilton-Jacobi Eq

HW#10: Small Oscillations

HW#11: Noninertial Reference Frame and Rigid Body Motion

HW#12: Rigid Body Motion (more practice problems)

#### Review from Previous Lecture



Since *U* does not dep on  $\dot{x}$  and  $x \mapsto x$  does not dep *t* explicitly, H = E.

Define 
$$\omega = \sqrt{k/m}$$
 or  $\omega^2 m = k \rightarrow H = \frac{p^2}{2m} + \frac{m\omega^2}{2}x^2 = \frac{1}{2m}(p^2 + m^2\omega^2 x^2)$ 

Notice that the system is not cyclic with the original variable x. We will attempt to find a canonical transformation from (x, p) to (X, P) such that X is cyclic so that P is constant.

With the form of H as sums of squares  $H = \frac{1}{2m} (p^2 + m^2 \omega^2 x^2)$ , we will try to exploit  $\sin^2 + \cos^2 = 1$ 

Trail Solution: 
$$p = g(P)\cos(X)$$
  $x = \frac{g(P)}{m\omega}\sin(X)$  (\*)

Substituting these into our Hamiltonian, we have

X is cyclic in K!

$$K = \frac{1}{2m} \left( g^2(P) \cos^2 X + m^2 \omega^2 \frac{g^2(P)}{m^2 \omega^2} \sin^2 X \right) = \frac{g^2(P)}{2m}$$

Need to find the right g(P) such that the transformation is canonical!

Try the following type 1 generating function: F = F(x, X, t) (with x and X being the indep vars)

For F to be canonical transformation, F(x, X, t) must satisfy the partial derivative relations (Type 1 in Table 9.1 in G):

$$p = \frac{\partial F}{\partial x} \qquad \qquad P = -\frac{\partial F}{\partial X}$$

Dividing the two trial solutions, we get,

$$\frac{p}{x} = \frac{g(P)\cos X}{g(P)\sin X(1/m\omega)} = m\omega \cot X \quad \text{or} \quad p = m\omega x \cot X$$

Then, the two partial derivative equations give:

$$p = \frac{\partial F}{\partial x} = m\omega x \cot X$$

$$P = -\frac{\partial F}{\partial X}$$

$$P = \frac{m\omega x^{2}}{2} \cot X$$

$$P = \frac{m\omega x^{2}}{2} \frac{1}{\sin^{2} X}$$

•

•

$$x = \sqrt{\frac{2P}{m\omega}} \sin X \qquad p = \sqrt{2m\omega P} \cos X$$

By comparing with our trial transformation equation,

$$\begin{cases} x = \frac{g(P)}{m\omega} \sin X \\ p = g(P) \cos X \end{cases} \quad \text{gives} \quad g(P) = \sqrt{2m\omega P} \quad (*')$$

Then, the transformed Hamiltonian is:  $K = \frac{g^2(P)}{2m} = \frac{2m\omega P}{2m} = \omega P$ 

## Example: Harmonic Oscillator $\frac{\partial F}{\partial t} = 0$

$$\boxed{\frac{\partial F}{\partial t} = 0}$$

With the transformed Hamiltonian  $K = \omega P = H = E$ , the Hamilton's Equations give,

$$\dot{P} = -\frac{\partial K}{\partial X} = 0$$
 (X is cyclic)  $\dot{X} = \frac{\partial K}{\partial P} = \omega$  depends on IC

 $\rightarrow P = const$   $\rightarrow X = \omega t + \alpha$ 

Together with the inverse transform, x(t), p(t) can be solved explicitly,

$$x = \sqrt{\frac{2P}{m\omega}}\sin\left(\omega t + \alpha\right)$$

$$p = \sqrt{2m\omega P}\cos(\omega t + \alpha)$$

Then with  $K = \omega P = E$ 

$$x = \sqrt{\frac{2E}{m\omega^2}} \sin\left(\omega t + \alpha\right)$$

$$p = \sqrt{2mE}\cos(\omega t + \alpha)$$

(*X*, *P*) is an example of Action-Angle variable pair,

$$X = \omega t + \alpha$$
  $P = const$ 



Phase Space area is invariant!

$$area = \frac{2\pi E}{\omega}$$



#### "Symplectic" Approach & Poisson Bracket

By considering  $Q_j(q, p)$  and  $P_j(q, p)$  as function of q and p explicitly and they satisfy the Hamilton's Equations,

We can derive the following four "direct conditions" for various (i, j) for the canonical transformation pair,  $Q_i(q, p), P_i(q, p)$ .

$$\begin{pmatrix} \frac{\partial Q_{j}}{\partial q_{i}} \end{pmatrix}_{q,p} = \begin{pmatrix} \frac{\partial p_{i}}{\partial P_{j}} \end{pmatrix}_{Q,P} \qquad \begin{pmatrix} \frac{\partial Q_{j}}{\partial p_{i}} \end{pmatrix}_{q,p} = -\begin{pmatrix} \frac{\partial q_{i}}{\partial P_{j}} \end{pmatrix}_{Q,P} \\
\begin{pmatrix} \frac{\partial P_{j}}{\partial q_{i}} \end{pmatrix}_{q,p} = -\begin{pmatrix} \frac{\partial p_{i}}{\partial Q_{j}} \end{pmatrix}_{Q,P} \qquad \begin{pmatrix} \frac{\partial P_{j}}{\partial p_{i}} \end{pmatrix}_{q,p} = \begin{pmatrix} \frac{\partial q_{i}}{\partial Q_{j}} \end{pmatrix}_{Q,P}$$